If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-27=0
a = 7; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·7·(-27)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*7}=\frac{0-6\sqrt{21}}{14} =-\frac{6\sqrt{21}}{14} =-\frac{3\sqrt{21}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*7}=\frac{0+6\sqrt{21}}{14} =\frac{6\sqrt{21}}{14} =\frac{3\sqrt{21}}{7} $
| 3(4x-2)=12+6 | | 4x+5=2+3.5x | | 8+6n-8=20-8 | | 3n2-8n+12=0 | | 12n2+8n+5=0 | | 11x2-4x+11=0 | | 5+x=-3x+1 | | (X^2)-13(y^2)=1 | | 3+x=2x+6 | | 6x/4-10=1 | | 2/3x-2=1/6x | | X/(-42)=50+2x | | -4.8=-80z | | 18y-6y+22=11(y+2)+y | | 16=4^(t/2) | | 3x+2+71+53=180 | | (t)=-16t^2+6t+12 | | 13w=9w+28 | | 4s2=–52 | | -2(x-1)=x-3x-2 | | v2+48=0 | | d2+77=77 | | A(t)=-2.3(t)-7 | | 4x-22=9 | | x2=–2 | | (x+42)+3x=10 | | 2x+25+50=180 | | 9×n=45n=5 | | 4x+⅔=5 | | 7k=–9+7k | | x=6*12/10*2/4/2/4 | | x=6*12/10 |